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Computational Behavior of Gauss-Newton Methods

Christina Fraley

Computer Science Department, Stanford University

Abstract

This paper is concerned with the numerical behavior of Gauss-Newton methods for nonlinear

least-squares problems. Here we assume that the defining feature of a Gauss-Newton method

is that the direction from one iterate to the next is the numerical solution of a particular linear

least-squares problem, with a steplength subsequently determined by a linesearch procedure. It is

well known that Gauss-Newton methods cannot be successfully applied to nonlinear least-squares

problems as a class without modification. Our purpose is to give specific examples illustrating

some of the difficulties that arise in practice which we believe have not been fully described in

the literature.
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1. Introduction

The nonlinear least-squares problem is given by

,z n

ran 1 -(z),

where 0p(z) are real-valued functions, or, equivalently,

rini - II(z)112
ren 2

where

We assume that each Oi has continuous second partial derivatives. The function J JHf(X)IJ will

be called the least-squares objective function.

The classical approach to nonlinear least squares, called the Gauss-Newton method, locally

approximates each residual component O of f by a linear function, using the relationship

f(X + p) = f(z) + J(z)p + O(11p112), (1.1)

where J is the Jacobian matrix of f, that is

The step to the new iterate from the current point is in the direction of the vector p that solves

min I1f + JpII2;

pER*

in other words, the change in the nonlinear least-squares objective fTf is being modeled by

the quadratic function
.Prp + 1. P-,1 p,

where

V (I fTf) = jTf. (1.2)
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Hence the Gauss-Newton method differs from Newton's method in that the Hessian matrix

V2 (1fTf = jTj+Z V 2

is approximated by jTj, a strategy that would seem reasonable when the residuals are small.

Although it is well known that the Gauss-Newton method does not work well under all

circumstances, it is not possible to say anything more precise about the method when considering

large and varied sets of test problems. Detailed numerical study is essential in order to understand

the practical shortcomings of the Gauss-Newton method. In this paper we analyze specific

examples of performance that reveal some of the difficulties that may be encountered in practice.

1.1. Overview

In Section 2, we show that a class of numerical methods, rather than a single method, is

defined by the linearization (1.1) of f, and motivate these methods from considerations that

arise in unconstrained optimization (see, for example, Fletcher [1980], Gill, Murray, and Wright

[19811, Dennis and Schnabel [1983], or Mori and Sorensen [19841) and linear least squares (see,

for example, Stewart [1973], Lawson and Hanson [19741, or Golub and Van Loan [1983]). Section

3 surveys research related to computational aspects of Gauss-Newton methods. In Section 4, we

give a general description of how the numerical results presented in the remaining sections of

the paper were obtained. Examples of the performance of Gauss-Newton methods on problems

with ill-conditioned Jacobians are presented in Section 5. An example of poor performance of a

Gauss-Newton method on a zero-residual problem with a well-conditioned Jacobian is analyzed

in Section 6. Tables of numerical results for two different Gauss-Newton methods for a large set

of test problems are included in an appendix.

1.2. Notation

Generally subscripts on a function mean that the function is evaluated at the corresponding

subscripted variable (for example, fk = f(zk)). An exception is made for the residual functions

0j, where the subscript is the component index within the vector f.
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2. Motivation

The Gauss-Newton method for nonlinear least squares can be viewed as a modification of

Newton's method in which jTj is used to approximate the Hessian matrix of the least-squares

objective function
fn

j(z)Tj(z) + Z',(,)V 24,(z).

Two promising aspects of this approximation are that computation of jTj involves only first

derivatives, and that jTj is always at least positive semi-definite. Moreover, if f(z') = 0 and
J(z*)TJ(z*) is positive-definite, then z* is an isolated local minimum and the method is locally

quadratically convergent. To see this, define

fn

i=1

(B is the neglected term in the Hessian) and consider the expansion of (1.2):

0 = j(x*)Tf(.) = + (jTj + B) (X _ X.) + O(IIZ - XI12),

which is valid since it is assumed that f has continuous second derivatives. The Gauss-Newton

search direction at the current iterate minimizes the quadratic function

TP+ 1 pTjTjp, (2.1)

and therefore satisfies the equations
jTjp= - (2.2)

Because j(z=)TJ(x *) is positive definite and J is continuous, (jTj)- exists and has bounded

norm in a neighborhood of z*. Hence convergence is quadratic when JJj((JTJ) ' lis
O(Ilz - x*II). In particular, quadratic convergence must eventually occur whenever f(z*) = 0,

because then 11f11 is O(J11 - xI11) (and so is IBIl). When the objective vanishes at a mini-

mum, (2.1) is an 011pI12 approximation to I (1lf(z + P)12 -I! (z)1l1), so that in the limit the

Gauss-Newton direction approaches the Newton search direction p, which satisfies

(jTj + B) p, = -f.

When f(z) i 0, the Gauss-Newton method will converge linearly if the smallest singular value

of jTj exceeds the largest singular value of B, but may otherwise diverge. It is not convergent
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when the minimum singular value of B exceeds the maximum singular value of JTj in a neigh-

borhood of a solution. For more detailed convergence analysis see, for example, Osborne [1972],

McKeown 11975a, 1975b], Ramsin and Wedin [1977], Deuflhard and Apostolescu [1980], Dennis

and Schnabel [1983, Chapter 10], Schaback [19851, and Hiussler [19861.

A drawback of the Gauss-Nevvton method is that when jTj is singular, or, equivalently, when

J has linearly dependent columns, (2.1) does not have a unique minimizer. For this reason the

Gauss-Newton method should more accurately be viewed as a class of methods, each member

being distinguished by a different choice of p when JJ is singular. The set of vectors that

minimize (2.1) is the same as the set of solutions to the linear least-squares problem

min Jp + f H2 . (2.3)
pelts

One (theoretically) well-defined alternative that is often approximated computationally is to re-

quire the unique solution of minimum 12 norm:

min pI12  (2.4)PE$

where S is the set of solutions to (2.3), while another is to replace J in (2.3) by a maximal linearly

independent subset of its columns (see, for example, the references cited above on linear least

squares). In finite-precision arithmetic, there is often some ambiguity about how to formulate and

solve these alternative subproblems when the columns of J are "nearly" linearly dependent, so

that, from a computational standpoint, any particular Gauss-Newton method must be still viewed

as a class of methods. The references cited above for linear least squares discuss at length the

difficulties inherent in computing solutions to (2.3) when J is ill-conditioned, and show that the

numerical solution of these problems is dependent on the criteria used to estimate the rank of

J. From now on, the term "Gauss-Newton method" will refer to any linesearch method in which

the search direction is the result of any well-defined computational procedure for solving (2.3).

For the moment, assume that a solution p to (2.3) can be computed. Then because p

satisfies (2.2), p is a direction of descent for fT whenever ,Pf 0 0 (in other words, #Tp < 0,

so that fiTf initially decreases along p). To guarantee convergence, the search direction must

also be bounded away from orthogonality to the gradient, a condition that may not be met by

a Gauss-Newton method unless the eigenvalues of jTj are bounded away from zero for the

sequence of iterates. Powell [1970] gives an example of convergence of a Gauss-Newton method
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with exact line search to a non-stationary point. Moreover, when jTj is nearly singular, the

(unique) solution to (2.2) can be very large in magnitude compared to IIJIJl and IIf! 2.

Bounding the norm of the solution is a major concern in formulating criteria for rank esti-

mation and solution of linear least-squares problems in finite-precision arithmetic, largely because

numerical solutions to (2.3) may not be very accurate when the columns of J are nearly linearly

dependent (see the references cited above on linear least squares). In the context of nonlinear

least squares, another reason to avoid large search directions is that numerical linesearch methods

may not be able to determine an adequate step length when 11PI12 is large. Moreover, the angle

between p and f may be taken into account in estimating the rank of J, since p must be a

descent direction for fTf that is bounded away from orthogonality to the gradient. We shall see

in Section 5 that, even with these additional considerations that can be brought to bear on (2.3)

due to the outer linesearch algorithm, it may be very difficult to give a numerical definition of

rank.

The performance of Gauss-Newton methods is not fully understood. Gauss-Newton meth-

ods are of practical interest because there are many instances in which they work very well in

comparison to other methods, and in fact most successful specialized approaches to nonlinear

least-squares problems are based to some extent on Gauss-Newton methods and attempt to ex-

ploit this behavior whenever possible (for a survey, see Fraley [19871). However, it is not hard

to find cases where Gauss-Newton methods perform poorly, so that they cannot be successfully

applied without modification to general nonlinear least-squares problems. These remarks will be

substantiated by examples in Sections 5 and 6.

Perhaps a reason for the variability in the performance of Gauss-Newton methods is that

they are not theoretically well-defined. To see this, let Q(z) be a k x m orthogonal matrix

function on R", that is, Q(z)TQ(z) = I for all z. Then IIQ(X)f(z))l = IIf(X)11 for all x, and

consequently the function I Qf defines the same nonlinear least-squares problem as f. The

Jacobian matrix of 1 is J QJ + (VQ)f, so that a minimizer of 11, + 1112 will ordinarily be

different from a minimizer of IJP + f112, unless Q(z) happeas to be a constant transformation.

However, if both Q and f have k continuous derivatives, then Vi IIQ(Z)f(Z)11 2 = V IIf(z)II

for i = 1,2,...,k. Letting W (VQ)f, so that J = QJ + W, we have

jTj - jTj + (jTQTW + WTQj) + WTW,
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showing that the Gauss-Newton approximation jTj to the full Hessian matrix is changed when

f is transformed by an orthogonal function that varies with z. Thus, with exact arithmetic,

there are many Gauss-Newton methods corresponding to a given vector function (in fact, each

step of a Gauss-Newton method could be defined by a different transformation of f), although

Newton's method remains invariant (see also Nocedal and Overton [1985], p. 826). Moreover,

the conditioning of J may be very different from that of J, so that, for example, the columns of

J might be strongly independent, while J is nearly rank deficient. Since k may be greater than

n, it is possible to imbed the given nonlinear least-squares problem in a larger one. To the best

of our knowledge the idea of preconditioning a Gauss-Newton method by an orthogonal function

at each step has never been explored, although some work has been done on conjugate-gradient

acceleration for Gauss-Newton methods in the full-rank case (see Ruhe [1979] and AI-Baali and

Fletcher [1985]).

3. Studies of Gauss-Newton Methods

Our main concern in this section is with research that specifically addresses computational

aspects of Gauss-Newton methods. Comparisons are most often made to Levenberg-Marquardt

methods for nonlinear least squares (see, for example, Mori [1978]), and to quasi-Newton meth-

ods for unconstrained optimization (see, for example, Dennis and Mori [1977], or any of the

references cited above for unconstrained optimization). For a survey of some of the early (mostly

theoretical) research on Gauss-Newton methods, see Dennis [1977].

Bard [1970] compares some Gauss-Newton-based methods with a Levenberg-Marquardt

method and some quasi-Newton methods for unconstrained optimization on a set of ten test

problems from nonlinear parameter estimation. His results are not directly comparable to the

Gauss-Newton methods described in this paper, because he uses the eigenvalue decomposition

of jTj in order to solve the normal equations (2.2), and modifies the eigenvalues if their mag-

nitude falls below a certain threshold in order to ensure a positive-definite system. In addition,

his implementations include bounds on the variables that are enforced by adding a penalty term

to the objective function. He finds that the Gauss-Newton-based methods are more efficient in

terms of function and derivative evaluations than the quasi-Newton methods, but that there is

no significant difference in the relative performance of the Gauss-Newton-based methods and the

Levenberg- Marquardt method.
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McKeown [1975a, 1975b] studies test problems of the form,

I( XTHz1x

f(x) = fo + Gox + - zTH,/

XTHZ)

chosen so that factors affecting the rate of convergence could be controlled. He uses three

such problems, each with seven different values of a parameter that varies an asymptotic linear

convergence factor. The algorithms tested include some quasi-Newton methods for unconstrained

optimization, as well as some specialized methods for nonlinear least squares that have since

been superseded. He concludes that, when the asympotic convergent factor is small, the Gauss-

Newton method is more efficient than the quasi-Newton methods but that the opposite is true

when the asympotic convergence factor is large. No mention is made of strategies to deal with

rank-deficient Jacobians in the Gauss-Newton method, so that presumably this situation is never

encountered in his experiments. We included these problems in our numerical tests (see the results

for problems 39 - 41 in the Appendix) and found that the Jacobian matrix was well-conditioned

at each iteration in every case.

Ramsin and Wedin [1977] compare the performance of a Gauss-Newton-based method with

that of a Levenberg-Marquardt method for nonlinear least squares and a quasi-Newton method for

unconstrained optimization, both from the Harwell Library. The quasi-Newton routine required

an initial estimate H0 of the Hessian matrix, and the choice H0 = J(xo)TJ(xo) was made on

the basis of preliminary tests that showed equal or better performance compared to He = I.

The test problems were constructed so that asymptotic properties could be monitored and are

similar to those of McKeown [1975a, 1975b] mentioned above. In all cases considered, the

Jacobian matrix had full column rank at the solution. The algorithm of Ramsin and Wedin uses

the steepest-descent direction, rather than the Gauss-Newton direction, whenever the decrease

in the objective is considered unacceptably small. The experiments involved variation of a large

number of parameters. Ramsin and Wedin conclude that their Gauss-Newton-based method and

the Levenberg-Marquardt method are identical when the asymptotic convergence factor is small,

but that the results do not show that either method is consistently better for large asymptotic

convergence factors. Also, they find that in instances when the asymptotic convergence factor

is large, the quasi-Newton method may be more efficient, although superlinear convergence of

the quasi-Newton method was never observed. Ramsin and Wedin maintain that Gauss-Newton

should not be used when (i) the current iterate zh is close to the solution x*, and the relative
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decrease in the size of the gradient is small, when (ii) xA is not near x', and the decrease in

the sum of squares relative to the size of the gradient is small, or when (iii) Jk is nearly rank-

deficient. Conditions (i) and (ii) are indicators of inefficiency for any minimization algorithm;

in general the problem of ascertaining the closeness of an iterate to a minimum is as difficult as

solving the original problem. As for condition (iii), we show in Section 5 that rapidly convergent

Gauss-Newton methods may exist even if nearly rank-deficient Jacobians are encountered, but

that it appears that different rules for estimating the rank of the Jacobian must be applied to

different types of nonlinear least-squares problems in order to obtain this favorable behavior.

Deuflhard and Apostolescu [1980] suggest selecting a step length for the Gauss-Newton

direction based on decreasing the merit function IIJktf(X)11 2 rather than Ilf(X)II2, for a class

of nonlinear least-squares problems thai -icludes zero-residual problems. The function J. is

the pseudo-inverse of Jk (see, for example, Golub and Van Loan [1983], Chapter 6); J4fk is

another way of representing the minimum 12-norm solution to IIJkP+ f1 2 . They reason that

the Gauss-Newton direction is the steepest-descent direction for the function IIJtf(z)1l2, so that

the geometry of the level surfaces defined by lIJtf(z)2 is more favorable to avoiding small steps

in the linesearch. A shortcoming of this approach is that is that there are no global convergence

results. The merit function depends on Xk, so that a different function is being reduced at each

step. Another difficulty is that, although the authors state that numerical experience supports

selection of a step length based on IIJ f(x)j 2 for ill-conditioned problems, the transformation Jt

is not numerically well-defined under these circumstances. Therefore neither the Gauss-Newton

search direction, nor the merit function, is numerically well-defined when the columns of Jk are

nearly linearly dependent.

Wedin and Lindstr6m [1987] present a hybrid algorithm for nonlinear least-squares that

combines a Gauss-Newton method with a finite-difference Newton method. The Gauss-Newton

method is implemented with a QR factorization and a scheme for rank estimation that depends

on information from the previous iteration, as well as on a user-supplied tolerance. They give

numerical results for a set of thirty large-residual test problems constructed by AI-Baali and

Fletcher [1985], and compare their results with those given by AI-Baali and Fletcher for two

hybrid Gauss-Newton/BFGS methods and a version of NL2SOL. Wedin and Lindstr&m find that

their method gives better overall results than the other methods, although their method does fail

in three cases due to a finite-difference Hessian that is not positive definite.
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Fraley [1987] gives numerical results for a large set of test problems using widely-distributed

software for unconstrained optimization and nonlinear least squares. She also includes some

Gauss-Newton methods that use LSSOL [Gill et al. (1986a)] to solve the linear least-squares

subproblem (these results are reproduced in an appendix to this paper). Her findings confirm

that Gauss-Newton methods are often among the best available techniques for nonlinear least

squares - especially zero-residual problems - but that there are many cases in which they fail

or are inefficient. However, no general a priori characterization is given of those problems on

which Gauss-Newton will work well; the present paper gives some insight into why it is difficult

to do so.

4. Description of Numerical Results

This section gives general information on the numerical results that are presented in the

remainder of this paper.

In the examples of Section 5, the LIUNPACK routine DSVDC [Dongarra et al. (1979)] is

used to compute the singular-value decomposition (SVD) of the Jacobian at each iteration ; the

linear least-squares subproblems within the Gauss-Newton methods are then solved via the SVD

A detailed description of the solution procedure for the subproblems is given in that section.

The same procedure is also used for the Gauss-Newton example in Section 6, although rank

estimation is not an issue there because the Jacobian is well-conditioned. The linesearch for the

Gauss-Newton examples in Sections 5, as well as for all of the numerical results in Section 6, is

taken from the nonlinear programming package KPSOL [Gill et al. (1979), (1986b)], and requires

both function and gradient evaluations.

The Gauss-Newton methods in Section 5 are compared to numerical results for some uncon-

strained optimization methods using the following widely-distributed software:

program method derivative global source
information strategy

KNA/EO4LBF modified Newton second linesearch NPL/NAG

NPSOL quasi-Newton (BFGS) first linesearch SOL/NAG

DMNH/HUHSL modified Newton second trust region PORT/ACM

DMNG/SUMSL quasi-Newton (BFGS) first trust region PORT/ACM
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These programs come from the following software sources:

NAG - Numerical Algorithms Group, Inc.
NPL - National Physical Laboratory, England

PORT - PORT Mathematical Software Library, A. T. & T. Bell Laboratories, Inc.
ACM - Association for Computing Machinery
SOL - Systems Optimization Laboratory, Stanford University

The following keywords, listed under the label 'cony.' in the tables, are used to describe

abnormal termination conditions:

F LIM. - function evaluation limit reached
LOOP - subroutine appears to loop
TIME - time limit exceeded

In the tables, under the label 'est. err.', we include the quantity

IIf*11 - IIfb.t-ll2

1 + IIfb1.t1I2

where f* is the value of f at the point of termination, and HIheat 112 is the best available estimate

of the norm of the solution, in order to get some idea of the error in 1f *112. For those problems

that have nonzero residuals, the value of IfetII 2 is given to six figures of accuracy, rounded

down.

We use the notation rank(J) for numerical definitions of the rank of the Jacobian, and

cond(J) for the condition number of the Jacobian (the ratio of the largest singular value to the

smallest singular value - see, for example, Golub and Van Loan [19831).

Two sets of data are given for each routine on each example, corresponding to two different

sets of values for parameters in the termination criteria. This data is taken from Chapter 2 of

Fraley [19871, which contains detailed information about the choices made for the parameter

values.

All of the programs were run in FORTRAN using double precision on the IBM 3081 and IBM

3033 computers at Stanford Linear Accelerator Center, for which

relative machine precision EM = 2.22... x 10- 16 ; ./ = 1.49... X 10- .
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5. Performance on Problems
with Ill-Conditioned Jacobians

We explained in Section 2 that the Gauss-Newton framework defines a class of methods,

whose members are distinguished by the numerical algorithm for solving the linear least-squares

subproblem (2.3) for a search direction, as well as by the linesearch method that is subsequently

used to find a steplength along that direction. This section is concerned with the variablity in

Gauss-Newton algorithms that is due to computational procedures for the linear least-squares

subproblem. The most stable techniques for solving ill-conditioned linear least-squares problems

involve orthogonal factorizations: the singular-value decomposition (SVD) and the QR factor-

ization (see the references cited in Section 1 on linear least squares). The linear least-squares

subproblems within our Gauss-Newton examples are solved by means of the SVD. Results are

not given for Gauss-Newton methods that use the QR factorization, because the same basic

considerations apply in choosing the search direction, and also because in practice the behavior

is similar to that observed for the SVD.

5.1. SVD Solution to Linear Least-Squares Subproblems

Given the singular-value decomposition of the Jacobian

U(S O)VT, ifm<n;
L SVT, if m = n;(5.1)

U( )VT, ifM > n;

where S is diagonal with non-negative diagonal entries al 2 ! _ ... > Cmim{m,n), and U and

V are orthogonal, define

rtMa =_ max { i l $ 0 }.

t LetL et= = ~ ; , 2 , . , . , ( 5 2 )
jal Vj

where uj , vj are the jth columns of U and V. respectively. The columns of V form an orthonormal

basis for Wn , and rj, j = 1, 2, ... , i, are the components of pi in terms of this basis, with

II 112

;~r



When i < min{m, n), p, has no component in the space spanned by {vi+, Vi,+ .. , VminJ,,.m} .

In exact arithmetic, each pi is either orthogonal to the gradient # = jTf of the nonlinear least-

squares objective, or it is a descent direction (see, for example, Chapter 4 of Fraley [1987)).

In practice the SVD cannot be computed exactly, and the solution to the linear least-squares

subproblem (2.3) is taken to be pr, where r < rm is an estimate of the rank of J. In the

examples below, the numerical rank of the Jacobian is defined to be

rank(J) a max { i > e(1 + al)}. (5.3)

This criterion depends only on J and does not take into account the size of the search direction

p, the angle between p and the gradient, or the vector f. Some specific examples will now be

given that show some of the difficulties involved in defining rank(J) for Gauss-Newton methods.

5.2. Chebyquad n = m = 8 (# 35a.)

The first example is related to the problem of locating nodes for Chebyschev quadrature

[Fletcher (1965); More, Garbow, and Hillstrom (1981)], and demonstrates that the choice of c

in (5.3) can be critical.

Gauss-Newton

, E 10-14 E < 10-11

f, J evals. 147 124
item. 44 19

11z'112  1.65 1.63

11,,112 10- 2  10-1

11#'12 10-11 101
est. err. 10- 9 10- 2

The algorithm succeeds in finding an approximate minimum when f = 10- 14 , although it fails

when t = 10-1'. The problem is rather easily solved by the unconstrained methods, as shown in

the table below.

12



HNA DMNH NPSOL DMNG
f evals. 46 46 14 14 33 35 34 38
J evals. 46 46 11 11 33 35 24 28
itess. 15 15 11 11 19 21 24 27IIX*11 2  1.65 1.65 1.65 1.65 1.65 1.65 1.6,5 1.6,5UV112 10-1 10-1 10- l 10-1 10-1 10 - 1 10-1 10-1

119*112 10-  10- 1  10-  10- 9  1.-5 10-7 10-5 1.-
eat. err. 10 - 9  10 - 9  10-9 10-9 10-9 10-9 10_ 9  10_9

The next two tables trace the progress of the Gauss-Newton methods for f = 10-14 and c =
10-15, respectively.

13



Gauss-Newton on Problem 35a.

= 10-14

k f, J IlXkIl2 II11 2  JIIN'l I1Pk112  glPk ak cond rank
evals. Jk J

0 8 2.E+00 2.E-01 8.E-01 2.9+00 -4.E-02 7.3E-02 102 8
1 16 2.E+00 2.E-01 7.E-01 3.E+00 -3.E-02 1.5E-02 102 8
2 24 2.E+00 2.E-01 7.E-01 2.E+00 -3.E-02 1.5E-02 102 8
3 32 2.E+00 2.E-01 6.3-01 4.E+00 -3.E-02 3.51-02 102 8
4 35 2.3+00 2.3-01 5.3-01 7.E-01 -3.E-02 3.1E-01 102 8
5 37 2.9+00 1.B-01 3.1-01 2.1-01 -1.1-02 2.2E-01 101 8
6 41 2.9+00 1.E-01 2.3-01 6.E-01 -1.E-02 1.6E-02 102 8
7 47 2.9+00 1.E-01 2.3-01 1.3+01 -9.3-03 5.03-05 103 8
8 54 2.9+00 1.E-01 2.3-01 1.9+02 -9.3-03 4.9E-07 104 8
9 62 2.E+00 1.3-01 2.E-01 1.3+03 -9.3-03 4.83-09 101 8
10 69 2.3+00 1.3-01 2.E-01 1.3+04 -9.E-03 5.1E-11 106 8
11 76 2.E+00 1.3-01 2.E-01 1.9+05 -9.1-03 1.13-13 107 8
12 83 2.E+00 1.3-01 2.E-01 1.3+06 -9.E-03 5.03-15 108 8
13 90 2.9+00 1.3-01 2.E-01 1.3+07 -9.3-03 4.9E-17 109 8
14 97 2.3+00 1.3-01 2.E-01 1.E+08 -9.E-03 4.9E-19 1010 8
15 104 2.E+00 1.E-01 2.E-01 1.E+09 -9.E-03 4.7E-21 1011 8
16 111 2.E+00 1.E-01 2.E-01 1.3+10 -9.E-03 4.7E-23 1012 8
17 118 2.E+O0 1.3-01 2.E-01 1.3+11 -9.E-03 4.73-25 1013 8
18 120 2.3+00 1.3-01 2.3-01 8.3-02 -4.E-03 5.7E-01 1014 7
19 123 2.2+00 8.3-02 2.E-01 8.3-03 -8.3-04 2.13+00 1014 7
20 124 2.3+00 6.3-02 7.3-02 9.3-03 -5.E-04 1.OE+00 1014 7
21 125 2.E+00 6.3-02 3.E-02 2.3-03 -5.3-05 1.0E+00 1014 7
22 126 2.3+00 6.E-02 1.E-02 1.E-03 -1.3-05 1.03+O0 1014 7
23 127 2.3+00 6.3-02 5.E-03 4.E-04 -2.E-06 1.03+00 1014 7
24 128 2.3+00 6.E-02 2.E-03 2.3-04 -3.3-07 1.0E+00 1014 7
25 129 2.3+00 6.3-02 8.3-04 6.3-05 -4.E-08 1.03+00 1014 7
26 130 2.3+00 6.3-02 3.E-04 3.E-05 -2.3-09 1.0E+00 1014 7
27 131 2.3+00 6.E-02 1.3-04 1.3-05 -1.3-09 1.03+00 1014 7
28 132 2.E+00 6.3-02 5.3-05 4.3-06 -2.E-10 1.03+00 1014 7
29 133 2.3+00 6.E-02 2.E-05 2.3-06 -2.E-11 1.0E+00 1014 7
30 134 2.E+00 6.E-02 8.E-06 6.E-07 -4.E-12 1.0E+00 1014 7
31 135 2.3+00 6.3-02 3.E-06 2.E-07 -6.3-13 1.03+00 1014 7
32 136 2.3+00 6.3-02 1.3-06 9.-08 -.- 14 1.0+00 1014 7
33 137 2.E+00 6.3-02 5.3-07 4.E-08 -1.3-14 1.OE+00 1014 7
34 138 2.3+00 6.E-02 2.3-07 1.3-08 -2.3-15 1.OE+00 1014 7
35 139 2.2+00 6.3-02 8.3-08 6.3-09 -3.Z-16 1.0&+00 1014 7
36 140 2.9+00 6.3-02 3.3-08 2.3-09 -5.1-17 1.03+00 1014 7
37 141 2.1+00 6.1-02 1.3-08 9.3-10 -8.3-18 1.03+00 1014 7
38 142 2.3+00 6.3-02 5.3-09 4.3-10 -1.1-18 1.03+00 1014 7
39 143 2.9+00 6.3-02 2.3-09 1.3-10 -2.3-19 1.03+00 1014 7
40 144 2.3+00 6.3-02 7.3-10 5.3-11 -3.3-20 1.03+00 1014 7
41 145 2.3+00 6.3-02 3.3-10 2.3-11 -5.3-21 1.0g+00 1014 7
42 146 2.3+00 6.3-02 1.3-10 8.3-12 -7.3-22 1.03+00 1014 7
43 147 2.3+00 6.3-02 4.3-11 3.E-12 -1.3-22 1.03+00 1014 7

2.E+00 6.E-02 2.E-11
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Gauss-Newton on Problem 35a.

C = 10 - 11

k fJ 1I--k112 114f112 119 112  IPkIl2 fP cond rank
evals. J J

0 8 2. E+00 2.E-01 8.1-01 2.1+00 -4.3-02 7.3E-02 102 8
1 16 2.E+00 2.E-01 7.-01 3.E+00 -3.9-02 1 6E-02 102 8
2 24 2.3+00 2.3-01 7.3-01 2.9+00 -3.3-02 1.63-02 102 8
3 32 2.3+00 2.3-01 0.1-01 4.3+00. -3.3-02 3.53-02 102 8
4 35 2.3+00 2.3-01 5.3-01 7.3-01 -3.3-02 3.13-01 102 8
5 37 2.3+00 1.3-01 3.3-01 2.3-01 -1.3-02 2.2S-01 101 8
6 41 2.1+00 1.3-01 2.3-01 6.3-01 -1.3-02 1.6E-02 102 8
7 47 2.1+00 1.3-01 2.1-01 1.9+01 -9.3-03 S.OE-06 103 8
8 54 2.3+00 1.3-01 2.3-01 1.3+02 -9.3-03 4.93-07 104  8
9 62 2.E+00 1.3-01 2.E-01 1.3+03 -9.3-03 4.83-09 10s  8
10 69 2.E+00 1.3-01 2.3-01 1.3+04 -9.3-03 5.13-11 106 8
11 76 2.E+00 1.3-01 2.3-01 1.3+05 -9.3-03 6.13-13 107 8
12 83 2.3+00 1.3-01 2.3-01 1.3+06 -9.3-03 6.O3-18 lOs 8
13 90 2.E+00 1.E-01 2.3-01 1.3+07 -9.3-03 4.93-17 109 8
14 97 2.E+00 1.3-01 2.3-01 1.3+08 -9.3-03 4.93-19 1010 8
15 104 2.E+00 1.3-01 2.E-01 1.3+09 -9.E-03 4.73-21 1011 8
16 111 2.E+00 1.3-01 2.E-01 1.3+10 -9.3-03 4.7E-23 1012 8
17 118 2.E+00 1.E-01 2.3-01 1.3+11 -9.E-03 4.73-25 1013 8
18 124 2.E+00 1.E-01 2.E-01 1.2+12 -9.3-03 O.OE-01 1014 8

Until iteration 18, the Jacobian has full column rank at each step according to (5.3), and

it becomes increasingly ill-conditioned as the computation proceeds. The search direction grows

very large and approaches orthogonality to the gradient, while the step length decreases. No

significant decrease is observed in either II!112 or 11§112 in iterations 6 - 17. At iteration 18, the

two Gauss-Newton methods differ. For c = 10-14 , the estimated rank of the Jacobian is reduced

to 7, and a significant decrease in the function is achieved. For e < 10-11, by (5.3) the Jacobian

still has full column rank, and the algorithm terminates because akpk is judged to be negligible

relative to IIXk112. Detailed information at the start of iteration 18 for the Gauss-Newton methods

is given in the next table.
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C < 10-14; iteration 18

r" Ir IPrII2 §Tp,-I Icos(g, p,)I

1 101 10 - 3  10 - 3  10 - 4  10 °

2 101 10- 16 10- 3  10- 4  10
3 100 10-16 10- 3  10- 4  10 0

4 100 10-2 10-2 10- 3  10°

5 100 10-15 10-2 10- 3  10

6 100 10-1 10- 1 10-3 10-1
7 100 10-14 10-1 10- 3 10-1
8 10-13 1012 1012 10-2 10-13

It seems reasonable to say that rank(J) = 7 rather than rank(J) = 8 at this point, because

O < a7' IIPs11 > 11P7112. and Icos(§,ps)j < Icos(#,p 7)I. Hence it is not surprising that it is

the method with e = 10-14, rather than the one with e = 10-15, that ultimately makes good

progress toward the solution.

The behavior of the Gauss-Newton methods can be explained by comparing the sequence

{p;} of steps from the iterates to the minimum of the function, to the sequence {Pk) of Gauss-

Newton steps. The magnitudes of the components of these vectors in terms of the basis {vj(zk)},

for iterations 6 - 18, are listed in the tables below.

components {rj(Zk)} ofp = - Zk in terms of {vj(Xk)}
k I r'1 I Nl I I I ',1r4,; Il I;

6 10- 2 10- 9  10- s  10-2 10- 9 10- 2 10- 9  10- 3

7 10- 2 10- 9  10- 8 10-1 10- 9 10-2 10- 9  10- 4

8 10-2 10- 9  10- 8 10 -2 10- 9 10- 2 10 - 9 I0 - 5
9 10- 2 10- 9  10- 8 10- 1 10- 9  10- 2 10- 9 10- 6
10 10- 2 10- 9  I0 - 8 10- 2  10- 9  10- 2 10- 9  I0 - 7

11 10- 2 10- 9  10- 8 10-2 10- 9 nj- 2  10- 9  I0 -

12 10-2 10- ' 10- 8 10-2 10- 9  10- 1 10- 9  10- 9
13 10-2 10- 9  

10 -a 10- 1 10- 9  10- 1 10- 9  10-10

14 10- 2 10- 9  10-8 10-2 10- 9  10- 2 10- 9  10- 1
15 10- 2 10- 9  10- 8 10- 2 10- 9  10- 2 10- 9  10 -12

)6 10- 2 10- 9  10- 9 10- 2 10- 9  10- 2 10- 9  10 - 13

17 10-2 10- 9  10- 8 10- 2 10- 9  10- 2 10- 9  10- 14

18 10- 2 10- 9  10-8 10-1 10- 9  10- 2  10- 9  10- 1s
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components {r,(Xk)} of Pk in terms of {vj(xk)}
k (" : 1I I T2l 1 3 1 I "4 l I rs I l 1 7-71 ['s l

6 10 - 3  10 - 17  10 - 16 10-2 10-14 10 -  10-15 100

7 10 - 3  10 - 16 10 - 16 10 - 2 10 -15 10-1 10 - 14 101

8 10 - 3  10 - 17  10 - 16 10-2 10 -15 10 -1 io - 14  102

9 10 - 3  10 - 16 10-16 10-2 10-15 10'-  10 - 14  103

10 10 - 3  10 - 16 10 - 16 10 -  10 - 15 10 - 1 10- 14 1o4

11 10- 3  10 - IT 10-16 10-2 10- I 5 10'-  10-14 IO

12 10 - 3  10 - 17 10- 16 10-2 10 - 15 10 - 1 10- 14 106

13 10 - 3  10-16 10 - 16 10-2 10- 15 10-1 10 - 14  107

14 10- 3  10 - 1 10 - 16 10-2 10 - 15 10- 1 10 - 14  10'

15 10- 3  10 - 16 10 - 16 10-2 10 -1s 10 - 1  10 - 14  109

16 10 - 3  10 - 16 10 - 16 10-2 10-15 10 - 1  1o - 14  1010

17 10 - 3  10 - 16 10 -16 10-2 10-15 10 - 1  10-14 10"l

18 10 - 3  10 - 16 10 -16 10-2 10 - 15 10-1 10-14 1012

The step p; to the minimum approaches orthogonality to vS(z&), while the Gauss-Newton

search direction becomes dominated by the component in the direction of vs(Xk) due to the

ill-conditioning in the Jacobian. Hence, by iteration 18, pk is almost orthogonal to p;. The

question of when to say that J has rank 7 rather than rank 8 is a difficult one. If full col-

umn rank is assumed until the search direction becomes numerically orthogonal to the gradient

then the method may become very inefficient (see iterations 6 - 18, where about seven function

evaluations are required per iteration). On the other hand, if the step to the minmum has a

component in the estimated null space null(J), underestimating rank(J) will inhibit decrease

in null(J), because the Gauss-Newton search direction will be orthogonal to null(J).

5.3. Matrix Square Root 1 n = m = 4 (# 36a.)

Another instance in which Gauss-Newton methods encounter ill-conditioned Jacobians is the

problem of finding the square root of a given (square) matrix (see the Appendix). Although the

matrix in question is only of order 2, the problem is a difficult one for the unconstrained methods,

as shown in the table below.
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MNA DMNH UPSOL DMNG

f evals. 4001 4001 4000 4000 786 2618 4000 4000

J evls. 4001 4001 2190 2190 786 2618 2891 2891

iters. 2663 2663 2190 2190 477 1437 2891 2891

11 *112 50.4 50.4 17.8 17.8 9.22 10.1 17.0 17.0

11f112 10- 9  10-9 10-6 10 - 6  10-1 10- 10-6 10 - 6

11#112 10-9 10-9 10- 10-6 1O-S 10- 10-6 10-s

est. err. 10- 19 10-19 10- 12 10- 12 10- 9  10- 9 10 - 1 10 - 11

CODV. V LIM. P LIM. P LIM. P LIM. P LIM. P LIM.

lINA is just Newton's method in this case, since the exact Hessian matrix is never modified,

although it does become ill-conditioned, with a condition number of order 1011 at the solution. In

the Gauss-Newton methods, the Jacobian does becomes ill-conditioned, but unlike the previous

problem, a solution is obtained only when the Jacobian is assumed to have full rank at each

iteration. A summary of the results for e = 10- 1° and c < 10-11 are given in the following table.

Gauss-Newton

= 10-1o C < 10- 11

1f J evals. 4004 95

iters. 473 39

11X*112 101 50.0

II6112 10 - 7 10-16

11#112 10-6 10-15

est. err. 10- 15 10 - 33

cony. P LIM.

The next two tables trace the iterations of the Gauss-Newton method for c = 10- 1° and c =

10 - 1 1, respectively.
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Gauss-Newton on Problem 36a.

c = 10-10

kI, I ~ kI 141 11kI1 jk 11 2 kPk ak cond rank
evals. A Jk

0 2 1.E+00 2.E+00 3.2+00 9.3-01 -3.1+00 1..OE+00 100 4
1 3 9.E-01 6.E-01 6.1-01 8.9-01 -4.E-01 1.OE+00 lO 4
2 5 1.E+00 4.E-01 7.E-01 1.2+00 -1.3-01 6.51-01 102 4
3 7 2.1+00 3.1-01 9.E-01 2.1+00 -8.1-02 4.5E-01 103  4
4 9 3.1+00 2.1-01 8.1-01 2.1+00 -5.1-02 4.01-01 104 4
5 11 4.E+O0 2.1-01 9.E-01 3.1+00 -3.1-02 3.7K-01 104 4

6 13 5.1+00 2.1-01 1.1+00 3.E+00 -2.1-02 3.4E-01 105 4
7 15 6.1+00 1.1-01 1.E+00 4.E+00 -2.1-02 3.3E-01 105 4
8 17 7.E+00 1.1-01 1.1+00 4.1+00 -1.E-02 3.2E-01 106 4
9 19 8.3+00 1.1-01 1.E+00 5.1+00 -1.E-02 3.11-01 106 4
10 22 1.1+01 1.1-01 1.E+00 6.E+00 -1.1-02 2.01-01 107 4
11 25 1.1+01 9.1-02 1.1+00 6.1+00 -8.1-03 1.81-01 107  4
12 28 1.2+01 8.1-02 1.1+00 7.2+00 -7.1-03 1.7E-01 107  4
13 31 1.E+01 7.1-02 1.9+00 7.1+00 -6.E-03 1.6E-01 107 4
14 34 1.1+01 7.1-02 1.1+00 8.1+00 -5.1-03 1.5E-01 108 4
15 37 2.E+01 6.E-02 1.1+00 8.1+00 -4.1-03 1.51-01 108 4
16 40 2.9+01 6.1-02 1.1+00 8.1+00 -3.1-03 1.4E-01 108 4
17 43 2.E+01 5.1-02 1.1+00 9.1+00 -3.1-03 1.41-01 108 4
18 46 2.E+01 6.E-02 1.1+00 9.1+00 -3.1-03 1.41-01 108 4
19 49 2.1+01 5.E-02 1.1+00 9.1+00 -2.5-03 1.3E-01 108 4
20 52 2.E+01 4.E-02 1.E+00 1.E+01 -2.1-03 1.31-01 109 4
21 55 2.9+01 4.E-02 1.1+00 1.1+01 -2.1-03 1.3E-01 109 4
22 58 2.E+01 4.1-02 1.1+00 1.1+01 -1.1-03 1.3E-01 109  4
23 61 3.1+01 4.E-02 1.E+00 1.1+01 -1.E-03 1.3E-01 109 4
24 64 3.1+01 3.3-02 1.1+00 1.1+01 -1.5-03 1.31-01 109 4
25 67 3.1+01 3.1-02 1.3+00 1.1+01 -1.1-03 1.31-01 109 4
26 70 3.1+01 3.3-02 1.1+00 1.1+01 -9.1-04 1.41-01 109 4
27 73 3.1+01 3.E-02 1.1+00 1.1+01 -7.1-04 1.41-01 109 4
28 76 3.1+01 3.1-02 1.3+00 1.1+01 -6.1-04 1.51-01 1010 4
29 79 3.E+01 3.1-02 1.1+00 1.2+01 -6.3-04 1.6s-01 1010 4
30 82 4.1+01 2.1-02 1.1+00 9.1+00 -6.1-04 1.71-01 1010 4
31 85 4.1+01 2.1-02 1.1+00 9.1+00 -4.1-04 1.93-01 1010 4
32 86 4.1+01 2.E-02 1.1+00 3.1-04 -3.1-04 1.01+00 1010 3
33 93 4.1+01 9.1-08 4.1-06 6.1+00 -8.1-16 2.11-04 1010 4
34 98 4.1+01 9.1-08 4.1-06 6.1+00 -8.1-16 9.91-05 I01O  4
35 103 4.2+01 9.E-08 4.1-06 6.1+00 -6.1-15 9.9E-06 1010 4
36 108 4.1+01 9.1-08 4.1-06 6.1+00 -S.1-15 9.9E-05 1010 4

470 3986 4.3+01 9.E-08 4.1-06 6.1+00 -8.1-15 2.2E-05 1010 4
471 3995 4.1+01 9.1-08 4.1-06 6.9+00 -8.1-16 2.21-05 1010 4
472 4004 4.E+01 9.E-08 4.1-06 6.E+00 -8.3-16 2.21-05 1010 4

4.E+01 9.1-08 4.E-06
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Gauss-Newton on Problem 36a.

= 10-11

k f, J II.Tk11 111 2 119klI2  JjPk112  #TkPk Ctk cond rank
evals. J Jk

0 2 1.E+00 2.E+00 3.E+00 9.E-01 -3.9+00 1.03+00 100 4

1 3 9.3-01 6.E-01 .- 01 8.3-01 -4.E-01 1.03+00 10' 4

2 5 1.2+00 4.3-01 7.E-01 1.3+00 -1.3-01 5.83-01 102 4

3 7 2.3+00 3.E-01 8.E-01 2.E+00 -8.E-02 4.8-01 103 4

4 9 3.E+00 2.E-01 8.3-01 2.E+00 -5.3-02 4.03-01 104 4

5 11 4.E+00 2.E-01 9.E-01 3.E+00 -3.E-02 3.7E-01 104 4

6 13 S.3+00 2.E-01 1.E+00 3.E+00 -2.E-02 3.4E-01 1o0 4

7 15 6.3+00 1.3-01 1.E+00 4.3+00 -2.E-02 3.3E-01 I05  4

8 17 7.9+00 1.E-01 1.3+00 4.3+00 -1.3-02 3.23-01 106 4

9 19 8.9+00 1.3-01 1.3+00 S.3+00 -1.3-02 3.1Z-01 10l 4

10 22 1.3+01 1.1-01 1.3+00 8.2+00 -1.3-02 2.03-01 107 4
11 25 1.2+01 9.E-02 1.3+00 6.3+00 -8.E-03 1.83-01 107 4

12 28 1.E+01 8.3-02 1.3+00 7.3+00 -7.E-03 1.73-01 107 4

13 31 1.3+01 7.3-02 1.3+00 7.3+00 -6.E-03 1.6E-01 107 4

14 34 1.E+01 7.3-02 1.E+00 8.9+00 -5.3-03 1.53-01 108 4

15 37 2.E+01 6.3-02 1.E+00 8.9+00 -4.3-03 1.6E-01 108 4

16 40 2.2+01 6.E-02 1.9+00 8.2+00 -3.E-03 1.43-01 108 4
17 43 2.2+01 5.E-02 1.9+00 9.3+00 -3.E-03 1.43-01 108 4

18 46 2.9+01 6.3-02 1.3+00 9.9+00 -3.3-03 1.43-01 108 4

19 49 2.3+01 5.3-02 1.2+00 9.2+00 -2.3-03 1.33-01 108 4
20 52 2.E+01 4.3-02 1.E+00 1.3+01 -2.3-03 1.3E-01 109 4
21 55 2.2+01 4.3-02 1.3+00 1.3+01 -2.3-03 1.33-01 log 4

22 58 2.2+01 4.3-02 1.8+00 1.3+01 -1.3-03 1.33-01 109 4

23 61 3.E+01 4.3-02 1.E+00 IE+01 -1.E-03 1.33-01 log 4
24 64 3.E+01 3.3-02 1.3+00 1.9+01 -1.3-03 1.3E-01 109 4

25 67 3.E+01 3.3-02 1.3+00 1.3+01 -1.E-03 1.3E-01 109 4

26 70 3.2+01 3.3-02 1.3+00 1.E+01 -9.3-04 1.4E-01 109 4
27 73 3.3+01 3.3-02 1.E+00 1.9+01 -7.3-04 1.4E-01 109 4

28 76 3.E+01 3.3-02 1.3+00 1.3+01 -6.3-04 1.5E-01 1010 4

29 79 3.2+01 3.3-02 1.9+00 1.3+01 -6.1-04 1.63-01 1010 4
30 82 4.3+01 2.3-02 1.3+00 9.9+00 -6.3-04 1.73-01 1010 4

31 85 4.3+01 2.3-02 1.3+00 9.3+00 -4.3-04 1.93-01 1010 4

32 87 4.3+01 2.3-02 1.3+00 8.3+00 -3.3-04 3.21-01 1010 4
33 89 4.3+01 2.3-02 9.3-01 7.3+00 -3.3-04 3.8E-01 1010 4

34 91 4.3+01 1.3-02 8.3-01 6.3+00 -2.3-04 5.33-01 1010 4

35 92 5.3+01 1.3-02 6.3-01 3.9+00 -1.3-04 1.03+00 1010 4

36 93 6.+01 4.3-03 3.3-01 3.E-01 -1.3-06 1.03+00 1011 4

37 94 5.3+01 1.3-05 7.E-04 6.3-04 -1.3-10 1.03+00 1011 4

38 95 5.3+01 2.3-11 1.3-09 1.3-09 -4.3-22 1.03+00 1011 4

6.9+01 6.3-17 4.3-16
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The first difference between the two methods occurs at iteration 33. Data available from

the SVD at the start of the iteration is shown in the following table.

< 10-10; iteration 33

r Orr IIPr 112 I#TPrI ICOs(#,pr)I

1 102 10- 4  10-4  10- 4  100

2 102 10- 4  10-4  10- 3  100
3 10 - 1 10 - 15  10 - 4  10 - 3  10°

4 10 - 3 101 101 10 - 3  10 - 1

The case for saying that rank(J) = 3 appears to be fairly strong. There is a large gap between

O4 and 03, and IcoS(#,p 4 ) is significantly smaller than Jcoj(§,p3)J. Moreover, it would appear

that the step taken when E = 10- 10 and rank(J) = 3 is better, in the sense that the reduction

in the values of both II112 and 119112 is appreciably greater than the reduction achieved when

c = 10- 11 and rank(J) = 4. On the other hand, IpN is not especially large for either choice

of rank. For f = 10- 10 , the algorithm subsequently makes unacceptably slow progress, while for

= 10- 11, quadratic convergence occurs after a few more iterations.

To see why no further progress can be made for c = 10- 10, consider the following table of

information on the state of the method at the start of iteration 34.

( < 10 -1°; iteration 34

r C -I IIP #TPrJ ! Pr)I

1 102 10- 9  10 10-4  100
2 102 10- 9  10- 4  10 - 4  100

3 10 - 1 10 -i1 10-1 1( - 4  100

4 I0 - s  101 101 10 - 4  1 -.

The singular values are nearly the same as those of the pre.ious iteration, but the change is

enough to have rank(J) = 4 rather than rank(J) = 3 according to (5.3). The value of Il1112

has decreased significantly after iteration 33 :Ir, I and Ir21, which were the dominant components

just prior to iteration 33, are much smaller at the start of iteration 34, although J'3l and Jl-4I
are essentially unchanged. As a consequence, 11P411 2 is now very large relative to IIaPlI, but
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Icos(§ ,p 4 )1 is small since v 4 is close to being orthogonal to g. In fact, if (5.3) is disregarded and

rank(J) forced to be 3, the method will converge to a local minimum in one step.

As in the previous section, we compare the sequence {p } of steps from the iterates to the

minimum of the function, to the sequence {Pk} of Gauss-Newton steps.

components {1'(Xk)} ofP; = X" - zk in terms of {v,(xk)}

k Irj* I 17

28 10 - 3  10 - 3  I0-15 101
29 10 - 3  10 - 3  10-16 101

30 10 - 3  10 - 3  10- 14  101
31 10- 3  10 - 3  10- 14  101
32 I0 - -3  10 - 15 101

components {r1 (zk)} of pk in terms of {t,(zk)1

k I -i I 'rl 1r31 1741
28 10 - 4  10 - 4  10 - 15 101

29 10- 4  10 - 4  10 - 15 101
30 10-4  10- 1 I0-15 101
31 10- 4  10 - 4  10-14 101
32 i0 - 4  I0 - 4  10-15 101

Taking rank(J) = 3 is a bad strategy, in this case, because the soution lies mainly in the

direction of V4(Zk).

5.4. Watson n = 20; m = 31 (# 20d.)

The final example for this section is a problem that might seem to be very hard for Gauss-

Newton methods. In Watson's problem (Brent (1973); Mori, Garbow, and Hillstrom (1981)], a

polynomial of degree n is fitted to approximate the solution of an ordinary differential equation.

The Jacobian matrix for n = 20 has singular values of order 102, 101, 101, 100, 100, 100, 10 - 1,

10-1, 10-2, 10-2, 10- 3 , 10- 4 , 10-1 , 10-1, 10 - 6 , 10 - 7 , 10-s , 10 - 9 10 1 , and 10-12 at the

origin. Yet there is very little difficulty in obtaining a solution, starting io- .o0 z- 0, for a wide

range of values of (, as shown in the table below.
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Gauss-Newton

10 - 8  10- 9  10-10 10-11; 10-12 10-13 > 10 - 14

fJ evals. 6 6 6 6 6 6
iters. 5 5 5 5 5 5

j1z 112 1.07 1.11 1.55 5.21 29.2 247.

111*112 10-1 10-8 1010-9 10-10 10-10

1!1112 10-4 10-14 1o'4 10-2 o-14 10-12

Gauss-Newton compares favorably on this problem with results for the unconstrained methods,

which are summarized in the next table.

MNA DKNH NPSOL DMNG

f evals. (352) (251) 50 (149) 76 200 110 134

J evals. (352) (251) 27 (56) 76 200 108 119

iters. (189) (135) 26 (55) 38 99 107 119

1X*'12 106 106 1.10 1.16 1.06 1.06 1.06 1.06
['[ 10-3 10-3 1- 10s 10-4 10-1 10-6 10-7

1W 11}2 10-1 10-1 10-13 10-13 10-1 10-11 10-11 10-12

est. err. 10 -  10 -  1016 1016 10 - 8 10 - 11 1012 1013

COnV. TIME TIME LOOP

In MNA, the Hessian matrix is nearly singular (but not indefinite) at every iteration, with condition

number ranging from 1011 to 1015, and it is modified at every step. The trust-region algorithm

DMNH, which also uses exact second derivatives, loops for some values of the parameters in the

termination criteria.

Watson's problem has a number of local minima, so that the value of the Gauss-Newton

solution is dependent on c. Nothing can be said concerning which of the local minima is the

"better" one without knowing how the solution is going to be used. For the larger values of C,

solutions are obtained that are small in magnitude and hence closer to the starting value, because

lower values of the rank restrict the size of the search directions. On the other hand, the final

value of the sum of squares is smaller for smaller values of c, because the objective function is

being decreased in a larger subspace at each step. Details of the Gauss-Newton iterations are

given below.
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Gauss-Newton on Problem 20d.

k f'J IIXkII2 I IfA112 11#kI112 IIPkI112  g'Pk Cf cond rank
evals. jk j

E-10-8

0 2 O.E+00 5.E+00 2.E+02 1.3+00 -3.E+01 1.03+00 1014 15
1 3 1.E+00 3.E+00 1.1+02 4.B-01 -6.E+00 1.OE+00 1013 15
2 4 I.E+00 4.E-01 2.3+01 5.E-02 -2.E-01 1.OE+00 1013 15
3 5 1.E+00 2.E-03 1.E-01 5.E-02 -4.E-06 1.OE+O0 1013 15
4 6 1.3+00 3.E-08 5.3-07 3.E-05 -2.E-16 1.OE+00 1013 15

1.E+00 3.E-08 2.E-14

=10- 9

0 2 O.E+00 5.E+00 2.E+02 1.E+00 -3.E+01 1.OE+00 1014 16
1 3 1.E+00 3.E+00 1.3+02 4.E-01 -6.3+00 1.03+00 1013 16
2 4 1.E+00 4.E-01 2.E+01 1.E-01 -2.E-01 1.0E+00 1013 16
3 5 1.E+00 2.E-03 1.3-01 2.E-01 -4.E-06 1.03+00 1013 16
4 6 1.E+00 2.E-08 5.E-07 1.E-04 -2.E-16 1.0E+00 1013 16

1.E+00 1.E-08 7.E-16

f = 10-10
0 2 0.E+00 5.E+00 2.E+02 1.E+00 -3.E+01 1.03+00 1014 17
1 3 1.E+00 3.E+00 1.E+02 4.E-01 -6.E+00 1.03+O0 1013 17
2 4 1.E+00 4.E-01 2.E+01 5,E-01 -2.E-01 .oE+O0 1013 173 5 1.E+00 2.E-03 I.3-01 T.E-01 -4.E-06 1.03+00 1013 17
4 6 2.E+00 1.E-08 5.E-07 6.E-04 -2.E-16 1.0E+00 1013 17

2.E+00 4.E-09 2.E-14

= 10-11; 10-12

0 2 O.E+00 5.E+00 2.E+02 1.E+00 -3.E+01 1.03+00 1014 18
1 3 1.E+00 3.E+00 1.E+02 4.E-01 -6.E+00 1.03+00 i013 182 4 1.E+00 4.E-01 2.E+01 2.E+00 -2.E-01 1.03+00 1013 18
3 5 2.E+00 2.E-03 1.E-01 3.3+00 -4.E-06 1.0E+00 1013 18
4 6 5.E+00 1.E-08 5.E-07 4.E-03 -2.E-16 1.OE+00 1013 18

5.E+00 1.E-09 6.E-13

= 10
- 1 3

0 2 0.3+00 5.E+00 2.9+02 1.3+00 -3.E+01 1.0E+00 1014 191 3 1.1+00 3.E+00 1.E+02 4.E-01 -6.E+00 1.0+00 1013 19
2 4 1.E+00 4.3-01 2.E+01 1.3+01 -2.E-01 1.03+00 1013 19
3 5 1.9+00 2.E-03 1.E-01 2.3+01 -4.3-06 1.03+00 1013 19
4 6 3.E+00 1.3-08 5.3-07 3.3-02 -2.E-16 '.OE+00 1013 19

3.3+00 5.3-10 3.E-14

( = 10-14

0 2 0.2+00 S.3+00 2.E+02 1.3+00 -3.E+01 1.03+00 1014 20
1 3 1.E+00 3.E+00 1.E+02 4.E-01 -6.E+00 1.0E+00 1013 20
2 4 1.E+00 4.E-01 2.E+01 8.3+01 -2.E-01 1.03+00 1013 20
3 5 8.E+01 2.E-03 1.3-01 2.E+02 -4.E-06 1.03+00 1013 20
4 6 2.E+02 1.E-08 5.E-07 3.E-01 -2.E-16 1.03+00 1013 20

2.E+02 2.E-10 4.E-12
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The condition number of the Jacobian remains very large throughout, yet the search direc-

tion is never especially large regardless of the choice of rank, because the sequence {uTfI} is

monotonically decreasing at about the same rate as the singular values (see (5.2). The unit

step gives sufficient decrease in every instance, on account of the many local minima. Moreover,

there is superlinear convergence for each value of e, despite the fact that p becomes very close

to being orthogonal to the gradient, with Icoa(#,p) ranging from 10- 5 for = 10- 8 . to 10- 9

for f > 10-14 in the final step.

6. An Example of Poor Performance

on a Well-Conditioned Zero-Residual Problem

On problems with well-conditioned Jacobians, Gauss-Newton methods are globally conver-

gent, and they are locally quadratically convergent if in addition the residuals vanish at the

solution (see Section 2). It is generally believed that Gauss-Newton methods will work well on

zero- or small-residual problems in which the Jacobian is never ill-conditioned. In this section,

we exhibit a zero-residual problem on which Gauss-Newton performs poorly, although cond(Jk)

never exceeds 5 x 103. The example used is the following modification of Rosenbrock's Function

[Mori, Garbow, and Hillstrom (1981), p. 21].

Modified Rosenbrock Function n = m = 2

0(=) = 100(X2 - X1)

0(z) = 1 - X1

Xo = (0, 0)

f(Z)=( (z) 0 at (1,1)

The starting point (0,0) lies at the bottom of a curved steep-sided valley in which the solution

(1, 1) also lies. The following table gives the results for rauss-Newton and Newton's method on

this problem.
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Modified Rosenbrock n = m = 2; z0 = (0, 0)

Gauss-Newton Newton's Method

f, J evals. 467 77
iters. 100 50
11z*112 1.41 1.41

111*112 10-15 10 - 13

cat. err. 10- 30 10-26

The same linesearch is used here for both methods (see Section 4). Newton's method can be

applied without modification, since the Hessian, as well as the Jacobian, is well-conditioned. In

this case, Gauss-Newton is Newton's method for nonlinear equations, because n = m. Contour
plots of the progress of the two methods are displayed on the pages following Section 7 of this

paper.

The minimum of the Gauss-Newton model (2.1) lies well outside the valley in which the

starting value and minimum are located, at least until the iterates are very close to the solution.

The univariate function 9(a) = 1If(Xk + apk)112 actually has a maximum at a = 1 for a E [0, 1],
rather than a minimum as predicted by the quadratic model; moreover, the function rises very

steeply from the valley floor to the maximum. Hence a significant number of function evaluations

are required in the linesearch in order to minimize O(a), and, initially, rather small steps are

taken along the search directions. Strategies for improving the efficiency of the method include

decreasing the maximum steplength amax and relaxing the parameter 77 that controls the accuracy

of the univariate minimization in the linesearch (see, for example, Gill, Murray, and Wright

[19811). For example, if NA is the number of function evaluations required to determine ak, and

the following scheme is used to define am"

ak = 7'k(1 + 11k112),

7Y0 = 1.0

k-= - if Qk-1 a m"'N and Nkh- 2
-yk- 1/2 if Ok-1 a and Nk-1 > 2,

26



then the Gauss-Newton method solves the problem in only 63 iterations and 135 function eval-

uations with q = 0.5. By contrast, the relatively efficient performance of Newton's method can

be explained by the fact that the minimum of the Newton quadratic model falls very near the

curve along the valley floor connecting (0,0) to (1,1) (which is followed by the iterates of both

methods), at all iterations except the first one.

7. Conclusions

We have examined the performance of some Gauss-Newton methods on specific examples

and given precise explanations of the observed results in every case. From some of these examples,

we conclude that ill-conditioning in the Jacobian does not necessarily imply that a Gauss-Newton

method will not work well, but that there appears to be no strategy that is uniformly best

for estimating rank in the linear-least squares subproblems. We give another example showing

that Gauss-Newton methods may not necessarily be effective on well-conditioned zero-residual

problems. Most importantly, we have demonstrated that it is necessary to look at details of

the performance of Gauss-Newton methods in order to make meaningful statements about their

behavior.
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startin v+ue ++ (G

solution : x = (1, 1)

G - k k+Pk

+ - k ZkkPk
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.N N

Newton's Method on the Modified Rosenbrock Function

starting value: zo = (L,O0)

solution : =* (1, 1)

V - Zk+Pk

+ - Xk + kPk
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8. Appendix: Numerical Results
for some Gauss-Newton Methods

8.1. Software and Algorithm

In this section numerical results are given for the test problems described in the previous

subsection. The software package LSSOL [Gill et al. (1986a)] is used to solve the linear least-

squares subproblem (2.3). The linesearch procedure used for the numerical examples in this

section, and also in Sections 5 and 6, requires both function and gradient information. It is taken

from the nonlinear programming code UPSOL [Gill et al. (1979); (1986b). Numerical results for

the same set of test problems using widely-distributed software for unconstrained optimization

and nonlinear least squares can be found in Fraley [1987].

8.2. Parameters

Parameters in LSSOL were kept at their default values with the following exceptions

Rank Tolerance - varied, see tables
Infinite Bound Size - 1020

See Gill et al. [1986a] for details concerning the parameters.

In addition, the following parameters are chosen for the linesearch

Y - 0.5
amax - rin {(100(1 + 11Z112) + 1) /Ilp11 2 ,1020} t

t In some cases the default value a,,.. was too large and overflow occurred during function evaluation
in the linesearch. These cases are indicated in the tables by giving the value -f < 100 such that
amx = min{('f(1 + 114112) + 1)/ 11PI12 ,1020} that was submequeatly used to obtain the results in
the column labeled "step fac.".

See, for example, Gill, Murray, and Wright [1981) for a discussis;n of the linesearch parameters.

8.3. Convergence Criteria

Convergence is judged to have occurred at the kth iterate if either

30



or
2/3,

11#k0I2 - t. i + 11k12). (8.2)

The algorithm is also terminated if there is a negligible change in z,

ak IIPkII2 
< CO(1 + IlzkI12), (8.3)

where ak is the step length determined by the linesearch.

8.4. Table Information

Under the label 'conv.', the following notation is used to describe conditions under which

the algorithm terminates :

ASS F (8.1)
G - (8.2)
x - (8.3)

F LIM. - function evaluation limit reached

Under the label 'est. err.', we include the quantity

1111l2 - I/ 2 (8.4)
1+ IIfAI12

where f is the value of f at the point of termination, and IIfb.otII2 is the best available estimate

of the norm of the solution, in order to get some idea of the error in 11f112' For those problems

that have nonzero residuals, the value of 1lfbeat112 is given to six figures of accuracy, rounded

down.

A superscript 0 following a problem number indicates a zero--esidual problem.

A superscript L following a problem number denotes a linear least-squares problem.

For further details on the numerical tests, see Section 4. Information on the test problems is

given in the next section.
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Numerical Results for the Gauss-Newton Methods

n M rank step , J iters. llz*l,2 11f*112  1-112 eat. conv.
tol. fac. evals. err.

1.0 2 2 1 49x10- 34 13 1.41 10- 16 10-" s  10-32 AsS P.o

2 23xlo-" 34 13 1.41 10- 16  10- 15 10- 32 AS F,0

2.0 2 2 1 49X10-' 138 33 11.4 10' 10- 6 10' x
223x10-'" 225 38 11.4 10, I0- 13 101 o

3.0 2 2 1 49 10' 31 16 7.22 10-3 10-7 10- x

2.23x10 4 44 24 9.11 K1 6  10- 1' 0- 33 ASS P.O

4.0 2 3 1 49x10-' 56 14 106 10- 22  10- 2  10-44 As .0. x

2.23x10-'" 56 14 106 10- 22  10- 22  10- 44  AS. 7.

5.0 2 3 1.49x1o-" 8 6 3.04 I0- 14  I0- 13  10- 26 0

2 23x10-' 8 6 3.04 10- 14  10- 13  10-28 0

6. 2 10 1.49xlo-* 5.0 1180 166 .365 10' 10-6 10-6  x
2 23x10 ' 5.0 154 22 .501 102  104  10, x

7.0 3 3 1,49X10- 13 10 1.00 10-1 4  10- 23  10- 48  
ASS P.O

2.23x10- "  13 10 1.00 10- 24 10 - 23 10- 48  
ADS P 0

8. 3 15 1.49xo10- 7 6 2.60 10- 1 10- 11  10- 8  0
2 23x0'-" 7 6 2.60 10- ' 10- 11 10-8 a

9. 3 15 1.49x0-' 3 2 1.08 10- 4  10- 12  10- 14

2.23x10"l 3 2 1.08 I0- 4  10- 12  10- 14  0

10. 3 16 1.49x10-' 87 21 104 101 100 10' x
2.23x10" 30 10 104 10' 10-3  10- 7 x

11.0 3 10 1.49xlo-' (3000) (1232) 252. 10' 103 10-2 7 LIM
2.23x10" (3000) (998) 295. 10- ' 10- 1  10- 2  P LW

12.0 3 10 1.49x1o-' 7 6 10.1 10- "0 10- ' I0- 33 ADS P.0

2.23x10-" 7 6 10.1 10-16 10 10- 3 ADS P.0

13.0 4 4 149xIo-' 16 15 10-5 10-8 10-11 10- 16 a
2.23x 10- "  16 15 10-5 10-8 10- 11 10 - 16  0

14.0 4 6 1.49X10-' 96 40 2.00 10- 14  10- 13  10- 29 ADS P.0
23x- 96 40 2.00 10-" 10-" 3  10-2 9  ADS P.0

15. 4 11 1,49x10- 26 12 .328 0 0-  10- 9  o
2.23xo-" 26 12 .328 10- 2 10- "1 10- 9  a

16. 4 20 1.49x 10- 3484 1692 17.6 102 10-8 10-8 x
2.2xlo-' 3484 1692 17.6 102 10- 6 10-8 I

17. 5 33 1.4exio- 13 9 2.46 10-2 10- 11 10- 1" a
2.23x10-' 13 9 2.46 10- 2  10- ' 10- 11 a

18.0 6 13 1.49x10-' 10.0 (6005) (770) 2.97 100 100 IO3 P LIM

2.23x10 4 (6006) (750) 56.6 100 100 100 F L,

19. 11 65 1.49x10-' 24 16 9.38 10-' 10-" 10-6
2 23x-10" 24 16 9.38 10-' 10-1" 10-s
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Numerical Results for the Gauss-Newton Methods

n m rank step f, J iters. II1z112 IIf112 Ug 112 est. cony.
to). fac. evIls, err.

20a. 6 31 1 49x10-6 12 11 2.44 10-2 10- 11  10-10 a

2.23x 10 " 12 11 2.44 10-2 10 - 11 10 - 10 a

20b. 9 31 140x10' 6 5 6.06 10-3  10- 11 10-13 a
2 23x1o-* 6 5 6.06 10-3 10- 11 10-13 a

20c. 12 31 1 49x1o' 6 5 16.6 10-5 10- 3  10-16 a
2.2SX101-  6 5 16.6 10-B 10- 13  10-16 o

20d. 20 31 1.49x10- 6 5 1.07 l0-  10-13 10 o
2.23x1O-" 6 5 247. 10- 10 10-12 10-26 a

21a.0 10 10 149xIO-' 34 13 3.16 10- 16 I0-14 10- 31 ASS F,

2.2sx10-'" 34 13 3.16 10- 16 10- 14 10 - 31 ASS F.a

21b.0  20 20 149xlo-* 34 13 4.47 10-16 10- 14 10- 31 ASS P.o

2 23x10 "  34 13 4.47 10-18 10- 14  10-31 ASS ,. a

22a. °  12 12 1 49x1o-' 16 15 10- 4  10- 6 I0- 11  I0- 15  a
2 23x10'- 16 15 10- 4  10-8 10- 11 10-15 a

22b.0  20 20 1-49x10o 16 15 1 0-4  10-  10- 11 10-15 a
2 23x 10"'o 16 15 10- 4  10-6 10-11 10- 15 a

23a. 4 5 1 49XIo-' 86 43 .500 10- 3 10- 14 I-10 a
223x 10 "  86 43 .500 10- 3 10- 14  10- 10 a

23b. 10 11 1 49xo-' 99 36 .500 10- 2  10- 12 10-11 o
2 23x10-" 99 36 .500 10-2 10 - 12 10- 11 a

24a. 4 8 1 49x10' 781 204 .759 10-3 10- 12 10-11 a
2 23x0-' 781 204 .759 10-3 10- 12 10-11 a

24b. 10 20 1 49 xO-' (10002) (1636) .594 10- 2  10- 1 10- 4  P LM

2 2sxl0-' (10002) (1636) .594 10-2  10- 1  10- 4  , .

25a.0 10 12 149X10-' i 0 3.16 10- " 10- 14  10-30 ASS P, a

2.23x10-" 11 10 3.16 10-15 10- 14  10-s0 ASS F.a

25b.0  20 22 1 49x1o-' 13 12 4.47 10-" 10-3 1030 ASS P.a

2 23xIo- "  13 12 4.47 10-"5 10-13 10- 30 ASS P a

26a.0 10 10 1 49XIo-' 16 8 .306 1011 10- 11 10-22 a
2 23x10-' 16 8 .306 10-" 10 10-22 a

26b.0  20 20 143x1o-" 25 10 .222 1011 10-  10-22 a
2 23x10-' 25 10 .222 101 10- 11 10-22 a

2Ta.0 10 10 1.49x10- 21 7 3.18 10- 1" 10-14  10-29 AS. .

2 sx10-' 21 7 3.18 10- 15 10- 14 10-29 ADS P.a

27b.0  20 20 1 49Xo- 10.0 22 9 4.47 10-12 10- 11 10-23 a
223x10-" 10.0 22 9 4.47 10-12 10-12 10- 23 a

28a. 10 10 1.49 x10-' 4 3 .412 10-"5 10-16 10- 31 A"., P.o

2,23x10- ' 4 3 .412 10-"5 10- 1 10- 31 ASS P.0a

28b.°  20 20 1 49KXo-' 4 3 .571 10-16 10 - 16 10-32 AS ..

2 23Xo-' 4 3 .571 10-16 10 - 16 10 - 32 ADS P.a
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Numerical Results for the Gauss-Newton Methods

n m rank step f, J iters. InZ*11 2 11f*12 Ig'112 est. cony.
tol. fac. evals. err.

29a.0  10 10 1 49xio-" 4 3 .412 10-14 10- 14 10-29 ADS. P. 0

2.23x1o " 4 3 .412 10- 14  10- 14  10-29 AS. P,. 0

29b.0  20 20 1.49x1o-" 4 3 .571 10- 14 10- 14  10- 2
8 o

2.2sX10-" 4 3 .571 10-14 10-14 10-28 0

30a.0 10 10 1.49xlO-" 6 5 2.05 10- 16  10- 15 10- 31  
ASS. P. 0

2.23x10- ' 6 5 2.05 I0- 16 10- 15 I0- 3
1  

ADS PO

30b.0  20 20 1.49X10-' 6 5 3.04 10-
1
5 10-15 10-3 1  

ADS P.o

2 23x1 1o- *  6 5 3.04 10-15 10- 's  10-31 ADS P.O

31a.0  10 10 1.49X10-' 7 6 1.80 10- '5 10- 15  10- 3' ASS P.O

2.23x10-" 7 6 1.80 10- 15 10- 10A- 3  D 1 SS P. 0

31b.0  20 20 1.49x1o- 7 6 2.66 10-11 10- 13 10- 3' ASS P.

2.23x10-' 7 6 2.68 10- 11 10- 15  10- 3 ADS P. 0

32.L 10 20 1.49xIo-* 2 1 3.16 100 I0-14  0.00 a

2.23x1o-" 2 1 3.16 100 10-
14  0.00 a

33.L 10 20 1.49X10-' 3 2 5.40 100 10- 10 10 -
6 c.x

2.23xlo-" 8 8 10V 100 102 10-3 jTP _

34.L 10 20 1.49xlO-' 3 2 4,90 100 10-1 10-6 a. x
2.23x0

1-" 3 2 4.90 100 10- 11 10-6 a. x

35a. 8 8 1.49x10-' 222 60 1.65 10- ' 10- 1' 10-9 a
2.23x1o- " 110 17 1.63 10- 1 10- 1  10- 2 x

35b.0  9 9 1.49x10" 107 21 1.73 10- 1
6 10- 15  10- 3

1  
AS P,.O

2.2SxO-" 257 37 1.70 10- ' 100 10 - 2 x

35c. 10 10 1.49xlO-' (10003) 1261 1.79 10- 1 10- 1 10- 2 F LIM
2.23x10- ' 4  203 28 1.79 10-' I0°  io- 2  

x

36a.0  4 4 1 49xo10- (4001) (677) 17.2 10- 9  10- 4  10-
11 , LIM

2.23X10-" 95 39 50.0 10-1a 16 5  10-
3 As. P.

36b.0  9 9 1.49x'o-* 1840 273 18.8 10-6 10- 12 10- 12 0
2.23x10-" 92 38 50.0 10- 10 1015 10

-
33 ADS. o

36c.0  9 9 1.49X10- 20 19 1.73 10- 11  10- 11  10- 22 0
2.23 xo- " 20 19 1.73 10-11 10- 11  10- 22 o

36d.0  9 9 1.40x10
-  1793 268 19.0 10- 6 10-11 10- 12 0

2.23x10-' (9002) (1158) 343. 10-6 10-5  10- 13  P LIM

37. 2 16 1.49x1o-' 37 35 8.85 101 10-s  10- 6 x
2.23x10-' 37 35 8.85 101 10-8 10-  x

38. 3 16 1 49 x1o- 31 24 26.1 101 10- 10 10- 6 o
2.23x10-' 31 24 26.1 101 10- 10 10- 6 a
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Numerical Results for the Gauss-Newton Methods

n m rink step f, J iters. IIz 112  Hf112 I1lj2 est con
tol. fac. evals. err.

39a. 2 3 1 49x10-' 8 7 10- 6  10-1 10- 11 10-  G
2 23x 10- " 8 7 10- 6 10 - 1 10 - 11 10- 7 o

39b. 2 3 1.49x10- 10 7 10- 7 I0- 1  10 - 11 0- 7  C
2.23x10 - " 10 7 10- 7  10-1 .10-11 10- 7  a

39c. 2 3 1.49x10-' 23 14 10-7  10-  10-12 7  
G2.23x10 -"*  23 14 10- 7  I0- 1 10- 12 10- 7

39d. 2 3 1.49x10-# 699 343 10-7  10-  10 - 11 10
- 7

2,23x10-" 699 343 10-7  10- 1 10- 11  10- 7

39e. 2 3 149X0- 1962 951 10-7  10-1 10- 10 10- 7

2.23x10-' 1962 951 10-7  10-' 10-10 10- 7

39f. 2 3 1.49xo10- (2001) (750) 10-9  10-1 10- 7  10
- 7  

F LIM

2.23x10- " (2001) (750) 10- 9  10-1 10
-
7 10-7 F 1,11

39g. 2 3 1.49x1o-' (2000) (670) 10-9  10-1 10- 6  
10

- 7  
P LIM

2.23x10-" (2000) (670) 10-9  10-1 10-6  10- 7  
P LIM

40a. 3 4 1 49x10-' 13 12 10- 6  100 10- 11  10- 7  
a

2.23x10
-  13 12 10-1 100 10-11 10- 7  a

40b. 3 4 1.49x10- 16 10 10-6 10°  10
-
12 10- 7  G

2 23oX10
- " 16 10 10- 6  100 10-12 10- 7  a

40c. 3 4 1.49xlo-' 381 188 10- 7 100 10- 10 10- 7  
a

2.23x
-

10- 381 188 10 -  100 101 G0 a

40d. 3 4 1.49XID- 2695 1302 10
- 7  

100 10-10 10-7 Q
2.23xo-" 2695 1302 10- 7 10 10- 10 10- 7

40e. 3 4 149x10-' (3001) (983) 10- 7  100 10- 6 10- 7

2.23x10-'" (3001) (983) 10- 7  100 10-
6 10- 7  o

40f. 3 4 1.49x10- (3003) (505) 10-1 100 100 10 - 2 F LIM

2.23x10-" (3003) (505) 10 - ' 100 100 10- 2 F LIM

40 g. 3 4 1 49x10- (3002) (514) 10-1 100 102 Io0 F LIM

2.23x10-" (3002) (514) 10-1 100 102 100 F LIM

41a. 5 10 1 49xIOo 5 4 10- 6 100 0- 13  10- 7  
a

2 23x10-" 5 4 10-6 100 10 -
13 10

- 7  
a

41b. 5 10 1 49x10- 6 5 10- 6 100 10 - 10 10- 7  G
2 23x 10-' 6 5 I0- 6 100 10- 10 10- 7

41c. 5 10 1 49x10-' 12 11 l0-6 100 10 - 11 10- 7
2 23s10-' 12 11 10- 6 100 10- 11 10

- 7  
o

41d. 5 10 1 49x10-' 31 18 10- 1 100 10- 1
0 10- 7  a

223sx 10-" 31 18 10- , 100 10- 10 I0- 7

41e. 5 10 1.49x10-' 154 77 10- 7  100 10- 10 10- 7  o
2 23xlo-"' 154 77 10

- 7  100 10 - 10 10
- 7  

a

41f. 5 10 149xo-' 812 368 10- 7  100 1010 10- 7  o
2x-10" 812 368 10- 7  100 10- 10 10- 7  

C

41g. 5 10 1 49x10
-  2137 815 10- 8 100 10-

10 10-7
2 23x 10- 2137 815 10- 8 10°  10-

10 10 - 7  o
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Numerical Results for the Gauss-Newton Methods

n m rank step f, J iters. IzI112  IifAi 11 *112 est. cony.
tol. fac. evals. err.

42a.0  4 24 1 49xo-' 0.1 67 38 60.8 10-'3 10- 10 10- 25 x
2.23x10 4 0.1 67 38 60.8 10- 13  10-10 10- 25 x

42b.0  4 24 1 49xlo-' 0.1 611 316 61,9 I0- 13 I0- 0 10-25  x
2 23x1o-" 0.1 (4002) (1561) 105 102 1011 105 P LIM

42c.0  4 24 1 49X10 -  0.1 33 26 60.3 10- 13  10-11 10- 27 o. x
23x -10-' 0.1 33 26 60.3 I0- 13 10-11 10- 27 0, x

42d.0  4 24 1.49X1o-' 0.1 27 23 60.3 10- 14  10- 11  10- 2

2 23xI0"-' 0.1 27 23 60.3 10- 14  10-11 10- 28 0.

43a.0  5 16 1 49X11o- 1.0 22 14 54.0 10- 14  10-11 10- 27
2.23x 10-1'  1.0 22 14 54.0 10-14 10- 11  10-2 7 o

43b. °  5 16 1.49x10" 1.0 1167 392 62.1 10- 1 10- 11 l0- 2

2.23x -10' 1.0 1167 392 62.1 10-1 10-11 10- 2

43c.0  5 16 1 49xlo-' 1.0 23 14 54.0 10- 14  10-12 10- 28  o
2 23x10-' 1.0 23 14 54.0 10-14 10-12 10- 28  o

43d.0  5 16 1 49X10o- 1.0 19 9 54.0 10-14 10- 12 10- 27  0
2 23x10" 1.0 19 9 54.0 10- 14  10-12 10- 27 a

43e.0  5 16 1 49x10-' 1.0 37 19 54.0 10-14 10-11 10-27 ,
2 23x10 - 0 1.0 37 19 54.0 10-14 10- 11 10-27  o

43f.0  5 16 1 49xlO- 2.0 20 11 54.0 10-14 10- 12 10-27 o
2 23x10-  2.0 20 11 54.0 10-14 10-12 10-27

44&.0 6 6 1 49 x10-' 125 29 4.06 10- 14 10-12 10-27 G
2 23x 10-" 125 29 4.06 10- 14 10- 12 10-27 a

44b.0  6 6 1 49x10-' 5 4 3.52 I0-' I0-13 10-29 ADS , 0
2 2sx-10'" 5 4 3.52 10-15 10-13 10-29 ASS ,.O

44c.0  6 6 1 49X10-0 52 18 20.6 10-14 10- 11 10-29 ADS 7
2 23x10- 52 18 20.6 10- 14  10- 11 10-29 AS P

44d.0  6 6 1 49X10-' 36 15 15.3 I0- 14  10-'' 10-29 ,As I C

2 23x 10-" 36 15 15.3 10-14 10- 11 10-29 AS 1 0

44e.0  6 6 1 49x10-' 70 23 9.27 10-15 10- 12 10-29 ADS P j
2 2sx10-  70 23 9.27 10-15  10- 12 10-29 ASS 0

45&.0  8 8 149X10-' 125 29 4.06 10-14 10-12 10-27  0
3.23x 10-' 125 29 4.06 10-1 4  10- 12 I0- 27  a

45b.0  8 8 1 49x10- 5 4 3.56 I0-' 10- s  10- 79  A.,
2 2sx10-'" 5 4 3.56 10- ' 10- 13  10- 29 ADS F a

45c.0  8 8 1 49X10o- 52 18 20.6 10- 14 I0- 1  10-29 ADS F

22Sx1o' 52 Is 206 10- 14  10- 11 10- 29 ASS P

45d.0  8 8 1 49Xlo-a 36 15 15.3 10-15 10-11 10-29 ASS F P

2 2310 " 36 15 15.3 10-15 10-11 10-29 ASS P 0

45e." 8 8 1 49x0-' 70 23 9.31 10-14  10-11 10-28 0
2 23x10-'" 70 23 9.31 10- 14  10- 11 10-28 0
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8.5. Test Problems

Superscripts on problem numbers have the following interpretation

0: zero-residual problem
L linear least-squares problem

Problems from Mori, Garbow, and Hillstrom [1981]

n m

1.0 2 2 Rosenbrock

2.0 2 2 Freudenstein and Roth

3.0 2 2 Powell Badly Scaled
4.0 2 3 Brown Badly Scaled
5.0 2 3 Beale

6. 2 10 Jennrich and Sampson

7.0 3 3 Helical Valley

8. 3 15 Bard

9. 3 15 Gaussian

10. 3 16 Meyer

11.0 3 10 Gulf Research and Developmentt

12.0 3 10 Box 3-Dimensional

13.0 4 4 Powell Singular

14.0 4 6 Wood

15. 4 11 Kowalik and Osborne

16. 4 20 Brown and Dennis

17. 5 33 Osborne 1

18.0 6 13 Biggs EXP61

t For the Gulf Research and Development Function (# 11), the formula

oi(z) = exp[hi miz 2 n1s - ti

given in Mori, Garbow, and Hillstrom [1981] for the residual functions is in error. The correct formula
is

0j(z) = exp IN~ 7z2 3] ti

(see Mori, Garbow, and Hillstrom [1978]).

1 For the Biggs EXP6 Function (# 18), the minmum value for the sum of squares is given in
Mor4. Garbow, and Hillstrom [19811 as 5.65565.. .x 10 - . It can be easily verified that the residuals
vanish at several points (for example (1, 10, 1,5, 4, 3)).
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Problems from Mori, Garbow, and Hillstrom [1981] (continued)

n m
19. 11 65 Osborne 2t

20a. 6 31 Watson

20b. 9 31 Watson

20c. 12 31 Watson

20d. 20 31 Watson

21a.0 10 10 Extended Rosenbrock

21b. ° 20 20 Extended Rosenbrock

22a.0 12 12 Extended Powell Singular

22b.0 20 20 Extended Powell Singular

23a. 4 5 Penalty I
23b. 10 11 Penalty I

24a. 4 8 Penalty II

24b. 10 20 Penalty II
25a.0 10 12 Variably Dimensioned

25b.° 20 22 Variably Dimensioned

26a.0 10 10 Trigonometric

26b." 20 20 Trigonometric

27a.0 10 10 Brown Almost Linear

27b.0 20 20 Brown Almost Linear
28a.0 10 10 Discrete Boundary Value

28b.0 20 20 Discrete Boundary Value

29a.0 10 10 Discrete Integral

29b.0 20 20 Discrete Integral

30a.0 10 10 Broyden Tridiagonal

30b.0 20 20 Broyden Tridiagonal

31a.0 10 10 Broyden Banded

31b.0 20 20 Broyden Banded

3 2
.L 10 20 Linear - Full Rank

3 3V 10 20 Linear - Rank 1

3 4 .1 10 20 Linear - Rank I with Zero Columns and Rows

35a. 8 8 Chebyquad

35b.0  9 9 Chebyquad

35c. 10 10 Chebyquad

t For Osborne's Second Function (# 19), the value of f(z ° ) is given (to six figures) in Mori,
Garbow, and Hillstrom [19811 as 4.01377 x 10-2. The smallest value we were able to obtain was
4.01683 x 10-2.
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Matrix Square Root Problems

n m
36a.0  4 4 Matrix Square Root 1
36b.0 9 9 Matrix Square Root 2
36c.0  9 9 Matrix Square Root 3
36d.0 9 9 Matrix Square Root 4

These test problems come from a private communication of S. Hammarling to P. E. Gill in
1983.

MATRIX SQUARE ROOT

(10-4 1-) (10-2 so

36b 0  0 10
- 4  0 10

- 2

( 10 -4 0 0 5036b.0  0 0 10- 4  0 0 10- 2

4). (1 0 2)

00 0 00

/0 1 0) (0 01)
36d.0  0 0 0 0 00

(0 001 010

* The identity matrix was used as the starting value in all instances. Note that the iteration
should not be started with the zero matrix because it is a stationary point of the sum of
squares.

Problems from Salane [1987]

n m

37. 2 16 Hanson I
38. 3 16 Hanson 2
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Problems from McKeown (1975a] (also McKeown [1975b])

n m, A
39a. 2 3 McKeown 1 0.001

39b. 2 3 McKeown 1 0.01

39c. 2 3 McKeown 1 0.1

39d. 2 3 McKeown 1 1.0

39e. 2 3 McKeown 1 10.0

39f. 2 3 McKeown 1 100.0

39g. 2 3 McKeown 1 1000.0

40a.t 3 4 McKeown 2 0.001

40b.t 3 4 McKeown 2 0.01

40c.t 3 4 McKeown 2 0.1

40d.t 3 4 McKeown 2 1.0
40e.t 3 4 McKeown 2 10.0

40f.t 3 4 McKeown 2 100.0

40g.t 3 4 McKeown 2 1000.0

41a. 5 10 McKeown 3 0.001

41b. 5 10 McKeown 3 0.01

41c. 5 10 McKeown 3 0.1
41d. 5 10 McKeown 3 1.0

41e. 5 10 McKeown 3 10.0

41f. 5 10 McKeown 3 100.0

41g. 5 10 McKeown 3 1000.0

t In the data defining this problem given in McKeown [1975a] and [1975b], the matrix

,(2.95137 4.87407 -2.0506
B = 4.87407 9.39321 -3.93183,

-2.0506 -3.93189 2.64745

is in error (it should be symmetric). The value

2.95137 4.87407 -2.0506
B = 4.87407 9.39321 -3193189 ,

-2.0506 -3.93189 2.64745 /

which is correct to six decimal digits, was used in our formulation of the problem.
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Problems from DeVilliers and Glasser [1981] (also Salane [1987])

n m starting value
lb42a. 0  4 24 DeVilliers and Glasser 1 (1.0,8.0,4.0,4.412)

42b.0  4 24 DeVilliers and Glasser 1 (1.0, 8.0, 8.0, 1.0)
42c.0  4 24 DeVilliers and Glasser 1 (1.0, 8.0, 1.0,4.412)
42d.0  4 24 DeVilliers and Glasser 1 (1.0, 8.0, 4.0, 1.0)

43a.0  5 16 DeVilliers and Glasser 2 (45.0, 2.0,2.5,1.5,0.9)
43b.0  5 16 DeVilliers and Glasser 2 (42.0, 0.8, 1.4,1.8, 1.0)
43c.0  5 16 DeVilliers and Glasser 2 (45.0, 2.0, 2.1,2.0,0.9)
43d.0  5 16 DeVilliers and Glasser 2 (45.0,2.5,1.7, 1.0, 1.0)
43e.0  5 16 DeVilliers and Glasser 2 (35.0,2.5,1.7, 1.0, 1.0)
43f.0  5 16 DeVilliers and Glasser 2 (42.0,0.8,1.8,3.15, 1.0)

Problems from Dennis, Gay, and Vu [1985]

n m starting value
44a.0 t 6 6 Exp. 791129 (.299, -0.273, -. 474, .474, -. 0892, .0892)t
44b.0 t 6 6 Exp. 791226 (-.3,.3, -1.2, 2.69, 1.59, -1.5)
44c.0 t 6 6 Exp. 0121a (-.041,.03, -2.565, 2.565, -. 754,.754)t
44d.0 t 6 6 Exp. 0121b (-.056,.026, -2.991, 2.991, -. 568,.568)
44e.0 t 6 6 Exp. 0121c (-.074,.013, -3.632, 3.632, -. 289,.289)
45&.0  8 8 Exp. 791129 (.299,.186, - 0.273, .0254, -0.474, - .0892, .0892)t
45b.0  8 8 Exp. 791226 (-.3, -. 39,.3, -. 344, -1.2, 2.69, 1.59, -1.5)
45c.0  8 8 Exp. 0121a (-.041, -. 775,.03,--.047, - 2.565, 2.565, -. 754,.754)t
45d.0  8 8 Exp. 0121b (-.056,--.753,.026, -. 047, - 2.991,2.991, -. 568,.568)
45e.0  8 8 Exp. 0121c (-.074,--.733,.013, -. 034, -3.632,3.632, -. 289,.289)

t Variables X2 and X4 (b and d in Dennis, Gay, and Vu [1985]) are eliminated from the linear
constraints in order to get the 6-variable formulation of the problem (see Dennis, Gay, and Vu
[1985]).

I Specification of some starting values in Dennis, Gay, and Vu [1985) is incomplete. The correct
values were obtained from D. M. Gay in 1986.
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